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Abstract— This paper reviews the use of community detection
algorithms in social networks to automatically identify users
social circles (ex. family, college friends) in social networks.
With hierarchically nested and overlapping ground truth circles
(hand labeled), we pose the problem as a multi-membership
node clustering problem on a users ego-network, a network
of connections between her friends. We first establish a model
baseline for this problem, consisting of basic algorithms used in
community detection: connected components, Girvan-Newman,
greedy modularity optimization and k-clique. Then, we outline
the current state of the art algorithm and implement it
from scratch in Python (no publicly available code exists).
Furthermore, as the evaluation of predicted communities is
far from trivial for this problem, we give an exhaustive and
comparative summary of methods used to this day. Finally, we
evaluate and discuss the performance of all these algorithms on
the standard dataset for this task, Facebook egonets. We show
that the k-clique is the best algorithm among the baseline and
that although theoritically powerful, the state of the art model
is not robust to missing data. Finally, we suggest improvement
directions for this task. Beside the review, our contribution to
this problem is an open-source python package, containing the
model baseline, the state of the art model, along with a complete
evaluation module.

I. INTRODUCTION

Detecting communities is a fundamental problem in the
study of networks as strong community structure [1] is
one of the main characteristics of a social network. In
a purchasing behavior network, identifying customers
with similar interest and characteristics can lead to better
recommendation systems. In social networks, friend
suggestion and consistent newsfeed is derived from
community detection [2]. Also, with the huge volume of
data and the recent scandals, privacy management has
become a priority. Categorizing a user’s list of connections
into different circles gives better control over what to share
with each circle. A good example is Instagram’s new feature
close friends.

Therefore motivated by the above reasons, we propose to
work on automatically detecting social circles of Facebook
users by implementing and evaluating basic algorithms used
in community detection and the current state of the art
algorithm.

II. RELATED WORK

The problem of detecting social circles in an ego network
is certainly not a novel task and has been widely addressed
in the literature, as several research and experiments have
already been conducted. Wang et al. (2013) [3] proposed
a link community algorithm that identify circles that are
densely connected and whose members also share common

properties. This approach overcomes some of the limitations
of previous work such as failing to detect circles of small
size [4], having a limit to the number of circles that can
be detected [5] or requiring the number of circles to be
predefined [6]. The authors first reconstruct ego networks to
recover the missing relations and then give a new similarity
definition of the edges and cluster edges by link community
algorithm. Finally, they label circles to explain what features
caused these circles emergence. In [2], the authors also took
into consideration in their approach the similarity between
users that belong to the same community. The authors
proposed a joint probabilistic model for combining link and
node features for community detection. They first build a
model with the network links only. Then, they created a
new feature-based weighted network whose edge weight is
the node feature similarity between two nodes. Then, they
merged the original network and the created network. If two
nodes have a strong similarity, the original link between
the two nodes will be strengthened, otherwise it will be
weakened. An expectation-maximization algorithm (EM)
was employed for the optimization.

Many of the resulting algorithms can handle a broad range
of problems, which makes their study even more crucial. In
the table below, we list major techniques used to tackle this
problem.

Fig. 1. Overview of the algorithms used in the litterature

where Type refers to the underlying theoretical foundation
of the algorithm, with ML denoting the use of Machine
Learning.

III. DATA SET AND TASK DESCRIPTIONS

In this work, we used only Facebook anonimized data. The
dataset was provided by a Kaggle competition [7] and the
SNAP repository [8]. It consists of 111 ego networks each
ego network provided in a separate file and representing a
user and his alters (friends). In each file, one line refers to



one alter id and a list of all the friends id that he has in
common with the ego in question.

Fig. 2. Egonet with ground-truth circles

We furthermore had access to multiple files containing users
features (mainly consisting of personal information such
as first name, employer, hometown, languages, birthday,
etc.) and to hand-labeled ground-truth communities for
61 ego networks (i.e. circles each consisting of a subset
of friends of the ago network sharing common attributes
like university, sports team or else). These ground truth
information were manually provided by users who were
asked to do so. For matters of confidentiality, the values of
this features were replaced by numbers.

A. Exploratory Data Analysis

As we can see from the distributions below, we observe
that the underlying topology of the community structure
is complex and heterogeneous. It therefore legitimates the
need to design flexible and robust algorithms to deal with
such structures.

Similarly to the Exploratory Data Analysis phase in Machine
Learning applications, we also need a more thorough analysis
of our data (see future work).

Fig. 3. Circles and community tructures

B. Feature engineering

In our dataset, a lot of users personal information and which
might constitute potential features (i.e. university, location,
religion, political interests, etc.) presented a high number
of missing values (more than 50%) making them non-
useful. Since methods of filling missing values were not
consistent except for birthdays, it has been decided to get
rid of all the variables presenting more than 30% of missing

values which reduces our number of features from 56 to
2 features: gender and last time. Pairwise node similarity
features were generated based on the gender and last name
users information. The main motivation behind using the last
name is to know if two user are of the same family.

IV. ALGORITHMS

In this section, we will present an overview of the algorithms
landscape. First, we implement a baseline consisting of two
foundationals techniques of graph clustering: link clustering
and clique percolation, and confront them with the ground
truths circles. These algorithms work only with the network
structure. We therefore implement the current state of the
art for this task, which is a generative model for friendship
based on node features.

A. Link clustering

Girvan Newman Community Detection
The Girvan-Newman algorithm follows a divisive method
and looks for the edges in the network that are responsible
for connecting many pairs of other nodes. It progressively
removes edges from the graph (the ones with the highest
betweenness centrality) at each step which exposes the result
as a dendrogram. At each step of the algorithm, betweenness
scores are re-calculated [9][10]. The method that we applied
in this projects uses shortest path as a betweenness centrality
measure.

Fig. 4. Girvan Newman scheme

Although this method works really well because of the
recalculation of the betweenness centrality at each iteration,
it fails to detect overlapping communities.

Greedy Modularity Optimization
This algorithm is based on the idea of modularity introduced
by Girvan Newman community structure to test whether a
particular division is meaningful and it is defined as:

Q =
∑
i

eii − a2
i

with e being a symmetric matrix whose element eij is the
fraction of all edges in the network that link vertices in
community i to vertices in community j and ai the fraction
of all ends of edges that are attached to vertices in group i.



If a particular division gives no more within-community
edges than would be expected by random chance Q will
be 0 and values other than 0 indicate deviations from
randomness. Significant community structure appears when
Q is greater than 0.

Greedy modularity optimization begins with each node in
its own community and joins the pair of communities that
most increases modularity until no such pair exists [11].

The method we applied in this project uses a more optimized
version of the greedy modularity optimization suggested
in [12] and that is more convenient for extremely large
networks. We implemented it with Networkx.

Fig. 5. Greedy modularization scheme

Although this method is very efficient for extremely large
networks, ans similarly to Girvan-Newman method, it re-
mains unable to detect overlapping communities.

B. Clique percolation

A k-clique-community is defined as a union of all com-
plete subgraphs of size k (k-cliques) that can be reached from
each other through a series of adjacent k-cliques, adjacency
meaning sharing k-1 nodes. This definition is based on the
idea that the members of a community can be reached
through well connected subsets of nodes [13]. In this project
we tested different values of k and obtained optimal results
for k equal to 7.

Fig. 6. k-clique scheme

The main advantage of this method is that it can detect
overlapping communities as opposed to Girvan-Newman
and Greedy modularity optimization that can only detect

disjoint communities.

Connected Components Community Detection
This last method that we used is based on the simple idea of
detecting connected components in a graph. Each connected
component subgraph in which each 2 vertices are connected
by a path and which is connected to no additional vertices
in the graph - is considered as a community. Of course and
by definition, the detected communities do not overlap. This
method is expected to have a lower performance compared
to the other baselines given that it does not really reflect
the definition of communities in a real life setting where
communities have members that are connected to each other.

Fig. 7. Connected components scheme

All the methods that we described above and used as
baselines in this project are limited in a sense that they
cant incorporate non graph-based features such as personal
information available for each user (node).

C. State of the art

A generative model for friendship in social circles
Here we explain in details the state of the art model [5]
used for community detection in social networks. It is an
unsupervised model whose core is a generative model for
friendship in social circles, that defines the probability that
two nodes forming an edge as

p((x, y) ∈ E) ∝ exp
( ∑
Ck⊇{x,y}

〈φ(x, y), θk〉

−
∑

Ck 6⊇{x,y}

αk〈φ(x, y), θk〉
) (1)

with:
• θk: vector describing community Ck
• αk: regularization term that penalizes for larger k
• φ(x, y): similarity vector between two nodes x, y

Similarity vector
The quantity φ(x, y) is a similarity vector between nodes x
and y, that integrates the nodes features. The construction
of such features is explained in data set and task section.

Log likelihood
Given that the edges between nodes, each edge represented



as e = (x, y), are generated independently, the probability
of an ego-network, G, can be written down as the product
of positive evidence for all circles and negative evidence
against all circles. For given parameters (θk)k=1,...,K and
(αk)k=1,...,K , we formulate the log-likelihood as

lΘ(G, C) =
∑
e∈E

Φ(e)−
∑
e∈E

log(1 + exp Φ(e))

with

Φ(e) =
∑
Ck∈C

(
δ(e ∈ Ck)− αkδ(e 6∈ Ck)

)
〈φ(e), θk〉

Coordinate ascent
By considering the circles C as latent variables, we can find
Θ = ({θk}Kk=1, {αk}Kk=1) using coordinate ascent on Θ and
C

Ct = argmaxClΘt(G; C)
Θt+1 = argmaxΘlΘ(G,Ct)− λΩ(θ)

(2)

where Ω(θ) is a regularizaton parameter (see L-BFGS
solver).

The former equation can be solved using quadratic pseudo-
boolean optimization (QPBO) and the latter with L-BFGS.

The original and full algorithm of the state is given below:

Fig. 8. State of the art algorithm

Quadratic pseudo-boolean optimization
For a given set of parameters θ ∈ Θ, the problem
of maximizing the log-likelihood with respect to the
communities can be arguably solved by a quadratic pseudo-
boolean optimization (QPBO) on a Markov Random Field,
according to Boros et Hammer (2002) [14].

In a nutshell, the QPBO algorithm finds the binary variables
(whether or not a node is assigned to a particular community

Ck) that maximize the sum of continuous-valued energy
functions over pairwise terms (the energies of each possible
edge) based on roof duality.

McAuley et Lescovek (2013) [5] provide the retranscription
of the problem in the general form of pairwise QPBO (see
implementation notes)

Ck = argmaxC
∑

(x,y)∈V×V

Ek(x,y)

(
δ(x ∈ C), δ(y ∈ C)

)
where Ek(x,y) : {0, 1}2 7→ R are the energy functions
corresponding to the pairwise Markov Random Fields. In
our setting, binary variables encode the memberships of
nodes to a particular circle Ck, yielding four distinct cases,
to which we attribute a certain energy level, depending on
desirability

1) Low energy: an edge appears outside the circle
2) High energy: a non-edge appears outside the circle
3) Low energy: a non-edge appears inside the circle
4) High energy: an edge appears inside the circle

The exact derivation of Ek(x,y) (refer to the original
publication [5]) furthermore considers the feature similarity
φ(e) and the community parameter θk.

Ultimately, the QPBO algorithm [15] works by minimizing
possibly non-submodular dual with graph cuts. Afterwards,
boolean labels for each node are recovered from their
assignments to ”source” and ”sink” sets.

We used a Python package thinqpbo [16] that provides an
API of the C++ package developed by Vladimir Kolmogorov
[17]. However, the documentation of these packages being
rather limited, our use of the API remains rudimentary (see
Future work).

Implementation notes:
• ”Outside the circle” also includes the case where one

of the nodes appears inside the circle but the other does
not, that is where the pair of nodes crosses the circle.

• We negated the energies because QPBO solve mini-
mization problems.

• The QPBO was applied in a random order.

L-BFGS solver for log-likelihood
After the newly found communities Ct were computed, we
used scipy L-BFGS solver [18] to minimize the negative
regularized log-likelihood

Θt+1 = argmaxΘlΘ(G,Ct)− λΩ(θ)

where

Ω(θ) =

K∑
k=1

|θk|∑
i=1

| θki |



acts as an l1 regularization, therefore producing sparse and
readily interpretable parameters.

Additionally, we provided the L-BFGS the partial derivatives,
given by

The initial solution of the solver x0 = ((αk)Kk=1, (θk)Kk=1)
is defined as follows

• (θk)Kk=1 ∈ {0, 1}F initialized randomly
• αk = 1, ∀k ∈ {0, ...,K}

Implementation notes:
• The scipy solver minimizes the function so we negated

the log-likelihood.
• Empirically, a maximum number of iterations set

at 10 is enough to obtain a consequent increase of
log-likelihood.

Computing hyperparameters λ and K
In the original publication [5] the authors mention they used
the Bayesian Information Criterion to select the number of
communities. Being fundamentally limited on the number
of communities (see Results), we did not optimized K.
Furthermore, they note that the regularization parameter λ
has little to no effect when changed. (see future work).

V. EVALUATION

A. Metrics

Social circles detection needs an evaluation metric to assess
the performance of an algorithm given ground-truth circles.
In this context, the evaluation consists of two steps

1) Defining a similarity score s(C,C∗) between a pre-
dicted circle C and a ground-truth circle C∗.

2) Aligning the set of predicted circles to the set of
ground-truth circles so as to maximize the total sum
of similarities.

Similarity metrics
We list in the table below the most common similarity
measures used in the literature.
We then compute the scores between each pairs (C,C∗)
and store them in a matrix. The resulting score matrix
is non-necessarily square as the set of predicted and true
circles can differ in size.

It should be noted that both the F1 score and BER do
not induce a penalty for large circles (as they are kind of
normalized metric). This explains why most recently, the edit
distance has gained in popularity.

Fig. 9. Similarity metrics

Edit distance: The edit distance is a custom loss coming
from the original Kaggle competition Learning Social Circle,
from which we took our datasets. It has four basic edit
operations, all of them at cost 1

• Adding a user to an existing circle
• Creating a circle with one user
• Removing a user from a circle
• Deleting a circle with one user

This metric is mainly useful because it actually reflects
how far we are from the ideal solution (ground truth circles).

Ground truth labels provided by facebook data were
incomplete meaning that the true communities dont partition
the whole egonet (i.e. there are nodes belonging to no
communities). As this is troublesome for some metrics, we
created a community (circle) with all singled out nodes.

Aligning predicted communities to ground-truth circles
Once those features are computed and stored in a cost matrix,
we proceed with aligning the communities the communities
C to their ground-truth counterpart. Mathematically, there
are two methods:

1) Best Matching evaluation measure: For every detected
circle, we find its best ground-truth match and compute
the performance (we do this reciprocally as well). The
final evaluation function is the average of the two
performance measures:

The main drawback of this metric is that frequently,
several ground-truth circles are aligned to just one
predicted circle or vice versa. Furthermore, there is
no penalization of non-aligned predicted community
or ground truth.

2) Hungarian Matching evaluation measure: The align-
ment is defined as an optimal correspondence via
linear assignment, found by means of the Hungarian
algorithm:



There are no cases of single-to-multiple circles
alignment. However, the Hungarian algorithm can
suffer from degenerate optimal performance; when
it match small predicted circles with low cost, thus
leaving possibly large unaligned circles.

In each case, the final evaluation measure is the average
over the egonets in the dataset.

VI. RESULTS

We believe that the edit distance is the most complete and
accurate evaluation measure of the ones described above,
as it is a global measure between sets of circles, it does not
consider single-to-multiple circles alignments and it does not
lead to degenerate optimal performance.
Baseline results
All the baseline models but the k-clique algorithm depend
on hyperparameters, we therefore implement as is. As for the
k-clique, we find the optimal hyperparameter k by running
the algorithms for various of k. We report the results in the
boxplot below:

Fig. 10. Boxplot of the edit distances of k-clique algorithm for various k
(taken over all egonets)

We choose k = 7 as it minimizes the edit distance over
all egonets. Then we run all the models of our baseline
and display the results below in terms of edit distance as
previously explained.
As we can see, Girvan-Newman and Greedy Modularity
Optimization have similar performances having almost
the same spread and the median (90) of the edit distance
distribution. The 7-clique method performs better than the
aforementioned methods having a lower median (75) and
a smaller spread of the edit distance distribution. However,
the connected components method has a significantly larger
distribution spread than the other methods but a similar
median to Girvan-Newman and Greedy Modularity

State of the art
As expected, the algorithms most often than not produce

Fig. 11. Boxplot of the edit distances of our model baseline (taken over
all egonets)

degenerate results (i.e. empty communities and communities
consisting of the whole egonet mostly). The main reasons
for this failure lie in the dimensionality F of the features
φ(x, y). More precisely, the limits of this approach on our
dataset are characterized by:
• Robusteness: The iterative algorithm is heavily influ-

enced by the initialization of the parameters Θ0. Two
differents initialization will produce utterly different
results.

• Dot product For a community Ck and nodes x and y,
〈φ(x, y), θk〉 has far less discriminative power than it
would if F was higher.

• Number of possible communities K is upper-bounded
by the number of possible arrangements of Θ0 (i.e.
2F = 4 in our case).

Despite the aforementioned limits, it should be noted that the
algorithm almost always yield strong log-likelihood increase.

In the original publication[5], the authors point out that
they manually constructed facebook egonets with the full
features, but they did not release it publicly. It explains why
they got so good results with facebook features.

VII. FUTURE WORK

Exploratory Data Analysis
A more careful and attentive analysis of the social graph
(typically mean degree, connectedness, degree distribution...)
would be helpful to further understand the egonet topologies.

Better tests
As we see from our results, it performed poorly with
missing data. To analyze how robust is this model, we could
vary the percentage of missing values (roughly correlates to
the dimension of our feature similarity vector φ(x, y)) and
see the effect on the score.

Optimize code
Though we performed decent module testing of our code,



time limits prohibited us to run this package on other
datasets. For robustness purposes, the code would benefit to
be tested against google+ dataset. Beside data related issues,
several speed optimizations can be added to the code:

1) Use symmetric property of the energy matrices
2) Handle the feature matrix properly
3) Clever vectorization

QPBO
Implementing a well-documented python version of the
QPBO algorithm from scratch (as described in [15]) would
be very useful. This could give a much bigger control
over the node-communities assignments (including possible
penalty for semi-supervised learning) as well as statistics
and diagnosis tools of the resolution. We nonetheless
provide the normalization part (python).

Furthermore, the QPBO seems to be a natural framework for
clustering. This framework has possibly broader applications
outside of this specific generative model optimization.

Hyperparameters selection
Once we test our algorithm against rich datasets, a module
should take care of the hyperparameter optimization.
Moreover, the use of a Dirichlet Process to discover the
number of clusters should be envisioned, as the BIC can be
prone to overfitting problems.

Other techniques
Several other techniques which use node features reached
good results and should be further explored as well. They are
Block-Latent Dirichlet Allocation and low-rank embedding.

Python implementation of those models[19] (there exists
a python implementation of block-LDA but as the author
points out, it is a little rough on the edges and we did not
find an implementation of the low-rank embedding).
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