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ABSTRACT
In thisworkwe present a technique for automaticmusic genre
recognition using various machine learning techniques on
Free Music Archive Dataset [5]. It is important to note that
in this dataset track genres have parent/child hierarchical
relationship and a certain song can have multiple labels. We
therefore address this problemasmulticlass classification prob-
lem instead of multilabel classification problem to reduce the
complexity of the task by considering only the parent genre of
every audio and ignoring the child of that parent. In addition
our efforts are mostly concentrated on supervised machine
learning and deep learning methods to address this problem.
However we also dive into few unsupervisedmachine learning
techniques. Along with the results of our ML models, we per-
form extensive and detailed analysis of feature engineering
process, interpretation of confusion matrix for different clas-
sifiers and an in depth examination of convolutional neural
networks.

1 INTRODUCTION
Music Information Retrieval (MIR) is a field that involves retrieval
of useful information from music and has many real world applica-
tions. Music Genre Recognition is one such application, which over
the years has received a lot of attention not only from MIR research
community but also from giant tech firms. Nowadays companies
like Spotify and SoundCloud recommend music to their customers
using personalized music recommender systems and music genre
recognition is an important component of building those recom-
mendation engines. Another application of music genre recognition
might be to use the predicted genres or sub-genres and combine
them with the music meta-data and acoustic features (extracted
using signal processing techniques) in order to group similar songs
together. Finally music genre recognition can also help a music
artist or music composer to understand which music genre is pop-
ular among different section of the audience.

Therefore in this work we address the problem of Music Genre
Recognition as a multiclass classification task. The approach that
we adopted to tackle this task involves a combination of supervised
machine learning methods, unsupervised and deep learning meth-
ods.

The rest of the report is structured as follows: In Section 2 related
topics and works are discussed. Section 3 describes the dataset in
detail followed by an explanation on feature engineering in Section
4. In Section 5, we describe the supervised machine learning tech-
niques, unsupervised machine learning methods and Deep learning
based methods we used in our work, which is accompanied by the

evaluation table. In Section 6 and Section 7 we explain the experi-
ments we perform and the results we observe. Finally in Section 8,
we provide conclusive remarks and also mention future directions
of our work.

2 RELATEDWORK
Music Genre Recognition is certainly not a novel problem in the
field of Music Information Retrieval (MIR) and many studies and
research papers have been published on tackling this problem using
the whole spectrum of machine learning methods. [25] addressed
this problem with machine learning approaches such as Gauss-
ian Mixture model and k-nearest neighbour classifiers. They intro-
duced 3 sets of features for this task categorized as timbral structure,
rhythmic content and pitch content. Spectral Contrast and Spectral
Rolloff were some of the features used by them. [15] proposed a
feature extraction method based on wavelet coefficients histogram
and published an study on this multi-class learning problem. [16]
discuss the importance of psycho-acoustic features for recognizing
music especially the importance Short Time Fourier Transform on
Bark Scale. In the pre-deep learning era, Mel Frequency Cepstral
Coefficients (MFCC) based features were a prominent way of ad-
dressing this task. [10] trained a Hidden Markov Model (HMM)
model using MFCC features. [20] tackle the genre classification
problem by trying to improve the measurement of audio similari-
ties .[13] worked on the problem of audio music mood classification
by empirically selecting multiple descriptors to extract spectral,
temporal, loudness features and further trained a SVM (Support
Vector Machine Model) to perform classification. [19] combined
visual and acoustic features to train a SVM and adaboost classifier
to predict the genres of the songs. There are other methods that can
be used in order to classify music that were not used in this project
such as the Octave-Based Spectral Contrast (OSC) or Octave-Based
Modulation Spectral Contrast (OMSC) as presented in [14]. [12]
presented a method that relies on a language modeling approach
and takes in account the temporal information of the music signals
for genre classification.

With the rise of deep learning algorithmsmany researchers [3] have
used Convolutional Neural Networks (CNNs) and Long Short-Term
memory (LSTMs) based models over traditional machine learning
algorithms to attack the problem of music genre classification. [26]
proposed that spectrograms can be considered as images and can
be further used to train a convolutional neural network. Represent-
ing audio in the time domain for input to neural networks is not
very straight-forward because of the high sampling rate of audio
signals. [4] outlines the deep networks architecture that have been
successful in MIR tasks and in turn facilitate the selection of the
building blocks for many problems in music information retrieval



tasks.[18] extracted numerical features like low level average loud-
ness, low level spectral flux median and trained ensemble classifiers
like gradient boost classifier on those features whereas trained a
Convolutional Neural Network on the corresponding spectrograms
of the audio tracks.

3 DATASET AND TASK DESCRIPTION
Other fields of artificial intelligence like computer vision have many
established and benchmark datasets like ImageNet and MSCOCO
but in MIR there has been always been a dearth of such large
scale datasets. In ISMIR 2017 Free Music Archive dataset [5] was
published to aid this issue. The data includes:

• Audio track (encoded as mp3) of each of the 106,574 tracks.
It is on average 10 millions samples per track.

• Audio features likeZeroCrossingRate, ConstantQChro-
magram, Chroma STFTChromaCQT, Chroma Energy
Normalized, Tonnetz, Spectral Centroid, Spectral Band-
width, Spectral Contrast, Spectral Roll Off, RMSE, Mel
FrequencyCepstral Coefficient (consisting of 518 attributes
with statistics such as mean, standard deviation, skew, kur-
tosis, median, minimum, maximum) for each of the 106,574
tracks.

• Metadata provided with the dataset includes song title, al-
bum, artist, genres; play counts, favorites, comments; de-
scription, biography, tags. However in this work we have
not taken into account the metadata.

• The dataset is split into four sizes: small (8 balanced gen-
res), medium (16 unbalanced genres), large (161 unbalanced
genres), full (161 unbalanced genres). In this work we have
focussed on fma small dataset only including parent genres
like Hip Hop, Pop, Folk, Experimental, Rock, Interna-
tional, Electronic and Instrumental.

3.1 Task Description
• We address the problem of music genre recognition as mul-
ticlass classification problem.

• We apply supervised and unsupervised machine learning
methods and also perform some analysis on deep learning
based methods to tackle the problem.

• It is important to understand that in this dataset certain
genres have parent child relationship. Therefore in order
to lessen the complexity of the task, we convert this prob-
lem from multi-label classification problem to multi-class
classification problem by only considering the parent genre
of every audio track and ignoring the child genres of that
parent.

4 FEATURE ENGINEERING
4.1 Audio feature engineering
The raw data at our disposal consists of *.mp3 files and is therefore
not directly workable for Machine Learning models. We present
here how we extract informations from these files.

4.1.1 Extracting a floating point time series. We proceed by loading
each *mp3 file as a floating point signal resampled to the given rate
(sr=22050). This signal will be used in the following features.

4.1.2 Typical use of the features. Most features discussed below
are applied on successive frames of the song (time slices) and are
then processed with different techniques depending on the context:

(1) Machine Learning: The high dimensions of the raw data
(source of more than 22k time points) must be addressed for
all input variables. We proceed with a dimension reduction
step to this humongous set of features by using the first order
features, which are usual statistics (mean, median, std, skew,
kurtosis, min, max) that explains well the time dimension.
Furthermore, the frequency-based features are binned and
the aforementioned statistics are applied over the bins.
The MFCC is special as it outputs coefficients containing
both the time and frequency informations.

Feature Original features Statistics Total
RMSE 1 7 7
Spectral bandwidth 1 7 7
Spectral centroid 1 7 7
Spectral rolloff 1 7 7
ZCR 1 7 7
Tonnetz 6 7 42
Chroma stft 12 bins 7 84
Chroma cqt 12 bins 7 84
Chroma cens 12 bins 7 84
MFCC 139 NA 139

(2) Deep Learning: Refer to the Deep Learning section.

4.1.3 Root Mean Squared Energy. The energy of a signal corre-
sponds to the total magnitude of the signal, namely:∑

n=1
x(n)2 or

√
1
N

∑
n=1

x(n)2

For audio signals, that roughly corresponds to how loud the signal
is. It is common practice to take its Root-Mean-Square version
(right formula). We plot below the Root-Mean-Square Energy for
an extract of Queen - We are the champions. This extract will be
used throughout the feature engineering part.

Figure 1: Root Mean Squared Energy of our audio sample
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4.1.4 Spectral centroid. The spectral centroid is a measure used
in digital signal processing to characterise a spectrum. It indicates
where the "center of mass" of the spectrum is located. Perceptually,
it has a robust connection with the impression of "brightness" of a
sound.
It is calculated as the weighted mean of the frequencies present
in the signal, determined using a Fourier transform, with their
magnitudes as the weights:

C =
∑N
n=1 f (n)x(n)∑N

n=1 x(n)

where x(n) represents the weighted frequency value, or magnitude,
of bin number n, and f (n) represents the center frequency of that
bin.

4.1.5 Spectral bandwidth. Spectral width is the wavelength inter-
val over which the magnitude of all spectral components is equal
to or greater than half of the magnitude of the component having
the maximum value.

Mathematically, it is the weighted distance between each frequency
and the centroid. The weights are the spectrogram magnitude. The
p-th order spectral bandwidth for each frame:

Spectral bandwidthp = (

N∑
n=1

x(k) ∗ (f (k) −C)p )1/p

4.1.6 Spectral rolloff. This is a measure measure of the amount of
the right-skewedness of the power spectrum. Mathematically, it is
the frequency Rt below which 85% of the magnitude distribution is
concentrated:

Rt∑
n=1

xt (n) = 0.85 ·
N∑
n=1

xt (n)

where xt (n) is the cumulative energy of the spectrum of frame t
evaluated at frequency n.

Figure 2: Spectral Centroid, Rolloff and Bandwidth) are key met-
rics to characterize a spectrum evolution. They are however highly
correlated

4.1.7 Spectral contrast[8]. In most modern musics, strong spectral
peaks correspond to harmonic components; while non-harmonic
components, or noises, often appear at spectral valleys. Instead of
averaging the spectral envelope like the MFCC does, the spectral
contrast compute both spectral peak and valleys, thereby reflecting
the distribution of harmonic and nonharmonic components.

To compute the spectral contrast, we proceed by:
(1) Short-Time FFT is applied to the signal
(2) Apply Octave-scale filters on the spectrum
(3) The strength of spectral peaks, valleys, and their differences

are estimated in each sub-hand.
(4) Convert to log domain
(5) Apply Karhunen-Loeve transform (K-L)

In the theory of stochastic processes, the KarhunenâĂŞLoÃĺve the-
orem is a representation of a stochastic process as an infinite linear
combination of orthogonal functions, analogous to a Fourier series
representation of a function on a bounded interval.

From a standpoint of eliminating relativity, K-L transform and DCT
transform are equivalent. The K-L transform has however the bene-
fit of yielding orthogonal base vectors. It should be noticed that the
orthogonal base vectors for K-L transform are got from the training
data set.

We plot below the spectral contrast of our sample:

Figure 3: Spectral contrast

Each row of spectral contrast values corresponds to a given octave-
based frequency.
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4.1.8 Fast Fourier and Q-constant transforms. The frequencies that
have been chosen tomake up the scale ofWesternmusic are geomet-
rically spaced. Thus the discrete Fourier transform (DFT), although
extremely efficient, yields components which do not map efficiently
to musical frequencies. The Q-constant transform solves thus using
series of logarithmically spaced filters fk , with the k-th filter hav-
ing a spectral width δ fk equal to a multiple of the previous filter’s
width, namely:

δ fk = 21/n · δ fk−1 =
(
21/n

)k
· δ fmin

The Q-constant transform strength is its inherent dimensional-
ity reduction: fewer frequency bins are required to cover a given
range effectively, especially when frequencies span several octaves
(human hearing covers approximately ten octaves from 20 Hz to
around 20 kHz).

To represent the difference between the two, we compute from their
resulting frequencies the amplitude spectrogram and convert it to
a dB-scaled spectrogram and plots their heatmaps:

Figure 4: Spectrogram computed with SFFT and CQT

As we can see in the figure above, the constant-Q transform cap-
tures more information in the higher frequencies compared to the
FFT.

According to [Judith C. Brown], note identification, instrument
recognition, and signal separation are more easily tackled by pat-
tern recognition algorithms if Q-constant transform. However, her
experience was mainly restrained to instruments used in classi-
cal music. We will therefore use both transforms in our analysis.
This distinction will prove useful in the remainder of the feature
engineering section.

4.1.9 Chroma. Chroma features indicate howmuch energy of each
pitch class (C ,C∗,D,D∗, E, ..., B) is present in the signal. Specifically,
they project the spectrum onto 12 bins representing the 12 distinct
semitones (or chroma) of the musical octave. It is typically com-
puted for several frames, thus yielding an matrix (easily convertible
into an image using a heatmap).

The standard variants is to use either the FFT[6] of constant-Q
transform[2] spectrum to compute the normalized energy for each
chroma bin at each frame (see below). We normalize so that all bins
amount to 1.

Figure 5: Chromagram based on FFT and constant-Q transform

The chroma works by measuring the distribution of the notes en-
ergy over time. It is therefore a key mid-level representation to cap-
ture melodic and harmonic characteristics, as well as note material.
Furthermore, it is robust to changes in timbre and instrumentation.

Another variant called chroma CENS[17] consists of taking sta-
tistics over large windows to smooths local deviations in tempo,
articulation, and musical ornaments such as trills and arpeggiated
chords (see below). Those statistics are taken from the constant-Q
chromagram (see Fig. 4).

Figure 6: Chromagram Energy Normalized Statistics

The main advantage of CENS are its flexible granularity (window
length) and its predictive powers for audio matching and similarity.
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4.1.10 Mel-Frequency Cepstral Coefficients. Like other cepstrum
techniques, MFC’s aim is to transform a signal from the tempo-
ral domain to another one (frequency, time...). Specifically, Mel-
spectrogram is a 2D representation that is optimized for human
auditory perception. It compresses the STFT in frequency axis and
therefore can be more efficient in its size while preserving the most
perceptually important information. Mel-spectrogram only pro-
vides the magnitude (or energy) of the time-frequency bins, which
means it is not invertible to audio signals.

The exhaustive method to compute the MFCC is the following:
(1) Apply a pre-emphasis filter to amplify the high frequencies
(2) Slice into (overlapping) frames
(3) Apply hamming window function each frame (counteract

the assumption made by the FFT that the data is infinite and
to reduce spectral leakage)

(4) Compute the Short-Time Fourier transform on each frame.
(5) Compute power spectrum.
(6) Compute the filter banks. Mel-scale aims to mimic the non-

linear human ear perception of sound, by beingmore discrim-
inative at lower frequencies and less discriminative at higher
frequencies. The resulting features are however highly cor-
related.

Figure 7: Mel-scale

(7) To obtain MFCCs, a Discrete Cosine Transform (DCT) is
applied to the filter banks retaining a number of the resulting
coefficients while the rest are discarded.

Figure 8: Mel-spectrogram

4.1.11 Tonnetz. The Tonnetz (shown in figure 2) is a well known
planar representation of pitch relations first attributed to Euler and
re-appropriated by Neo-Riemanninan Music Theorists. We choose
to include the tonnetz in our analysis as various visual represen-
tations of the Tonnetz can be used to show traditional harmonic
relationships in European classical music.

In the planar representation, close harmonic relations are modelled
by small distances on the plane. Lines of fifths travel from left to
right, lines of major thirds travel from bottom left to top right and
lines of minor thirds travel from top left to bottom right.

Figure 9: The Harmonic Network or Tonnetz. Arrows show the
three circularities inherent in the network if octave equivalence are
assumed.

If we assume that octave equivalence (see fig.2), the plane wraps
up and forms a tube (Chew’s Spiral Array) with the line of fifths
becoming a helix on its surface. This helix is arranged so that
major third intervals are directly above each other on the surface
of the tube. If we further assume enharmonic equivalence, we can
reduce the infinite number of pitch names to just 12 pitch classes.
Topologically, it meanswe can join the end of the tubes andmapping
it to an hypertorus, with the circle of fifths wrapping around its
surface three times.

Figure 10: A projection showing how the Tonnetz wraps around
the surface of a Hypertorus with the pitch classes following the spi-
ral of fifths when enharmonic and octave equivalence are assumed.

Now that we projected our data into a suitable space to study
harmonic relations, we can now compute the tonnal centroids, i.e.
the centroid of the chroma vectors in this new space.
The tonal centroid ζn of the chroma for a frame n is computed in the
the following fashion. We first compute Constant-Q chromagram.
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Furthermore, we project each chroma pitch l onto dimension d :
ϕ(d, l) and weights the results with chroma values cl . Finally, we
normalize the results by the norm of the chroma vector | | c | | .
Mathematically, it translates to:

ζn (d) =
1

| | c | |

11∑
l=0

ϕ(d, l) · cl

We plot below the tonnal centroids against the chroma below:

Figure 11: Tonnal centroids and chroma vectors plotted over time

The advantages of this approach is two-fold:
• Event-driven feature analysis has been shown to give more
accurate musical feature extraction than more traditional
approaches based on frames of equal length

• Preprocessing stage for further harmonic recognition and
classification algorithms, mainly in chord change detection.

4.1.12 Zero-crossing rate. is the rate of sign-changes along a signal,
i.e., the rate at which the signal changes from positive to negative
or back. Namely for a signal s

ZCR =
1

T − 1

T−1∑
t=1

1R(st st−1)

This feature has been used heavily in both speech recognition
and music information retrieval, being a key feature to classify
percussive sounds. It is typically computed over several frames,
yielding a vector.

4.1.13 Metadata feature engineering.

5 METHODOLOGY
In this paper, we will explore music genre recognition as a super-
vised and unsupervised categorization. We also look at the Deep
Learning techniques that can be used for this task. The code for the
entire pipeline can be found here. The code for this work can be
found github. 1

We first split the total dataset (8000 songs) using a stratified sam-
pling into a training dataset of 6480 songs (roughly 80%), validation
dataset of 720 songs (roughly 10%) and test dataset of 800 songs
(roughly 10%).
1http://github.com/

Figure 12: Zero-Crossing Rate of Queen

5.1 Supervised Machine Learning pipeline
Our machine learning pipeline contains following steps:

5.1.1 Pre-processing: For feature normalizationwe perform stan-
dard minmax normalization strategy in order ensure that all the
features lie within the same range thereby making classifier less
biased towards any particular feature.

5.1.2 Feature engineering: This part has been covered in detail
in Section 3.

5.1.3 SupervisedMethods: We applied a plethora of supervised
machine learning techniques like Logistic Regression, Support Vec-
tor Classifier, Random Forest, Extra Trees, Gradient Boosting Clas-
sifier, Adaboost Classifier from [21]

5.1.4 Evaluation: In order to measure the performance of the
machine learning classifiers, we consider two evaluation metrics i.e
accuracy and the F1-Score (harmonic mean of precision and recall)
for each classifier. The results of each classifier on the Validation
dataset has been highlighted in Table1. We notice that the Extreme
Gradient Boosting classifier from XgBoost outperforms the rest of
the classifiers.

Machine_Learning_Methods Accuracy F1 Score

Logistic Regression Classifier 0.575 0.5673
Decision Tree Classifier 0.3652 0.3651
Random Forest Classifier 0.3680 0.3254

Multi-Class SVC 0.4555 0.4431
Multi-Class NuSVC 0.5638 0.5592

Multi-Class Linear SVC 0.5611 0.5459
Gradient Boosting Classifier (Scikit) 0.5638 0.5606

Extra Trees 0.5583 0.5498
Ext. Gradient Boosting Classifier (XgBoost) 0.5833 0.5808

Adaboost Classifier 0.4361 0.4229

Table 1: Results of Machine Learning Models on Val Dataset
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Logistic Regression based classifier despite of its simplicity does
quite well on our task and achieves a F1 score of 0.5673. The con-
fusion matrix of the logistic regression classifier indicates that the
algorithm has a competitive performance on Hip-Hop, Folk, Rock,
International and Instrumental genres while performance drops on
Pop genres. We also make an interesting observation that a lot of
Pop songs are misclassified as Folk songs by this classifier.

Figure 13: Confusion Matrix for the Logistic Regression Classifier

Examination of the confusion matrix of Support Vector Clas-
sifier (Linear Kernel) in Fig 12 brings us to the conclusion that
this classifier follows the same pattern as followed by the Logistic
Regression but with one exception on Experimental genre, where
Linear Kernel Based Support Vector Classifier performs better. It
is important to specify that the strategy used by this classifier to
perform multiclass classification is One v Rest.

When we consider RBF Kernel based Nu Support Vector Classi-
fier (variant of SVC), it achieves a F1 Score of 0.5638. The perfor-
mance on Hip-Hop, Experimental and Electronic genres suffers a
relative drop from the previous two classifiers but there is a signifi-
cant improvement in the classification of the Pop genre. However
again we notice that many songs whose true label is Pop are misclas-
sified as Folk. It is important to specify that this classifier uses one
v one classification strategy to perform multiclass classification.

Finally on scrutinizing the confusion matrix for extreme gradient
boosting classifier (xgboost) (refer Fig 11), we can make certain
interesting observations regarding the classifier. The classifier per-
forms relatively good on genres like International, Instrumental,
Folk and HipHop while the classifier achieves very poor perfor-
mance on songs with Pop genres. In this case also we observe that

Figure 14: Confusion Matrix for the Multiclass Linear SVC

Figure 15: ConfusionMatrix for theMulticlass RBF Kernel NuSVC

a large number of songs with Pop genre are misclassified as Folk,
Experimental and Rock. Such observations motivate us to develop
majority voting type of framework to improve this result. However
we will address this framework in our future work on this problem.

In order to estimate best hyperparameters of our models, we
used Stratified K-Fold Cross Validation (with K=5) on the training
dataset and further use random search over the set of hyperpa-
rameters of Extreme Gradient Boosting Classifier from XgBoost
Library. The advantage of using Stratified K-Fold Cross Validation
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Figure 16: Confusion Matrix for the Gradient Boosting Classifier

Technique is that it preserves percentage of tracks per genre. We
have used Random search strategy over Grid Search for tuning the
parameters because the former turns out to work better in practice
and is also much faster. The best parameters yielded by this strategy
are gamma=2, max_depth=4, min_child_weight=1. The accuracy
and F1 Score achieved by the Tuned Classifier Model on Test
Dataset are 0.525 and 0.5154 respectively.

5.1.5 Limitations with the approach: Considering that the
FMA dataset is quite a recent and majority of the work that has
been done on it involves heavy use of deep learning and represen-
tation learning based approaches which is why we cannot directly
compare our results to the ones achieved by the state of the art
methods on this dataset. In keeping alignment with the content of
the course, we have concentrated on more of a traditional machine
learning based pipeline which involves amalgamation of domain
specific feature engineering and application of general machine
learning models on the problem. In our future work, we will aim to
rectify this issue.

5.2 Unsupervised Techniques
Often applying unsupervised machine learning techniques gives a
better insight about latent information in the dataset, which even-
tually motivated us to apply popular unsupervised learning based
models to our problem. We are interested in discerning if unsuper-
vised models can aid supervised to improve the performance.

5.2.1 Dimensionality Reduction: We perform dimensionality
reduction on FMA Small Dataset using the technique of Principal
Component Analysis (PCA), which is illustrated in Figure 15 and
using tSNE, which is highlighted in Figure 16. While PCA finds the
direction to project data, which maximizes the variance of the data
whereas tSNE converts similarities between data points to joint

probabilities and tries to minimize the Kullback-Leibler divergence
between the joint probabilities of the low-dimensional embedding
and the high-dimensional data.

Figure 17: PCA Visualization of FMA Dataset

Figure 18: tSNE Visualization of FMA Dataset

5.2.2 K Means Clustering: Although PCA representation gives
us a good intuition that this problem is not a good candidate for
application of unsupervised machine learning methods directly but
we are interested understanding if there is any hidden structure
that KMeans clustering method can capture from the dataset and
therefore we fix the value of the number of clusters to 8 while
applying thismethod. Fig 17 represents 2D representation of various
clusters created by the KMeans algorithm.

As a concluding remark on the unsupervised techniques we can
comment that unsupervised machine learning techniques won’t be
very effective in increasing the efficiency and efficacy of our work
because of the structure of the data points in the dataset.
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Figure 19: KMeans Clustering on FMA Dataset with 8 Clusters

5.3 Deep Learning:
In recent years, great results have been achieved in generating
and processing images with neural networks. This can partly be
attributed to the great performance of deep CNNs to capture and
transform high-level information in images. A notable example of
this is the process of image style transfer using CNNs proposed by
L. Gatys et. al. which can render semantic content of an image in a
different style [11].

Deep learning research is pretty much based on shared mod-
ules and methodologies such as dense layers, convolutional layers,
recurrent layers, activation functions, loss functions, and back-
propagation-based training. This makes the knowledge on deep
learning generalizable for problems in different domains, e.g., con-
volutional neural networks were originally used for computer vi-
sion, but are now used in natural language processing and Music
Information Retrieval.

5.3.1 Why Deep Learning: It appears that we dispose of a rel-
atively narrow set of features and therefore there may be many
possibly relevant features that we missed or did not know about.
One of the main advantages of this technique is that the CNN,
by transforming the image through filters and maxpooling opera-
tions, will be able to discriminate between parameters that may not
have a tangible sense (after all the transformations) but are highly
relevant. However, the input remains decisive. The audio signal
has not been the most popular choice; researchers have preferred
2D representations such as STFT and mel-spectrograms because
learning a network starting from the audio signal requires even a
larger dataset. We decided to use mel-spectrograms as inputs for
our neural networks:

• Short-Time Fourier Transform: STFT provides a time-
frequency representation with linearly-spaced centre fre-
quencies. The computation of STFT is quicker than other
time-frequency representations thanks to fast Fourier trans-
form (FFT) which reduces the cost O(n*n) to O(nlog(n)) with

respect to the number of FFT points. The linear centre fre-
quencies are not always desired in music analysis. They do
not match to the frequency resolution of human auditory
system, nor musically motivated like the frequencies of Con-
stant Q Transform (CQT). This is why STFT is not the most
popular choice in deep learning âĂŞ it is not efficient in size
as melspectrogram and not as raw as audio signals. One of
the merits of STFT is that it is invertible to the audio signal,
for which STFT was used in sonification of learned features
[1].

• Mel-spectrogram:Mel-spectrogram is a 2D representation
that is optimized for human auditory perception. It com-
presses the STFT in frequency axis and therefore can be
more efficient in its size while preserving the most perceptu-
ally important information. Mel-spectrogram only provides
the magnitude (or energy) of the time-frequency bins, which
means it is not invertible to audio signals.

5.3.2 Why not ANN:. By stacking dense layers on the top of a
spectrogram, one can expect that the network will learn how to re-
shape the frequency responses into vectors in another space where
the problem can be solved more easily (the representations becomes
linearly separable). For example, if the task is pitch recognition, we
can expect the first dense layer to be trained in such a way that
each output node represents a different pitch. By its definition, a
dense layer does not facilitate a shift or scale invariance. For ex-
ample, if a STFT frame length of 257 is the input of a dense layer,
the layer maps vectors from 257-dimensional space to another V
-dimensional space. This means that even a tiny shift in frequency,
which we might hope the network be invariant to for certain tasks,
is considered to be a totally different representation.

5.3.3 Framework: Here is an illustration of the CNN we used :

Figure 20:An illustration of a convolutional layer in details, where
the numbers of channels of in- put/output are 2 and 3, respectively.
The dotted arrows represent a convolution operation in the region,
i.e., a dot product between convolutional kernel and local regions
of input.
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5.3.4 Kernel Size: The kernel size determines the maximum size
of a component that the kernel can precisely capture in the layer.
How small can a kernel be in solving MIR tasks? The layer would
fail to learn a meaningful representation if the kernel is smaller
than the target pattern. For example, for a chord recognition task,
a kernel should be big enough to capture the difference between
major and minor chords. For this reason, relatively large-sized
kernels such as 17 ÃŮ 5 are used on 36-bins/octave CQT [1].

The second question would then be how big can a kernel be?
One should note that a kernel does not allow an invariance within
it. Therefore, if a large target pattern may slightly vary inside, it
would better be captured with stacked convolutional layers with
subsamplings so that small distortions can be allowed.

However, as large kernels imply more parameters, due to our
limited computation capacity we used relatively small kernels (3*3).

5.3.5 Depth of the Network: In designing a network, one may
find it arbitrary and empirical to decide the depth of the network.
The network should be deep enough to approximate the relation-
ship between the input and the output. If the relationship can be
(roughly) formulated, one can start with a depth with which the
network can implement the formula. Fortunately, it is becoming
easier to train a very deep network. For example, networks for
music tagging, boundary detection, and chord recognition in 2014
used 2- layer convnet [23] but recent research often uses 5 or more
convolutional layers [9].

5.3.6 Generating the Spectrograms: The code used to gener-
ate the spectrograms used as inputs for our Deep Learning models
can be found in the notebooks.

5.3.7 Organizing theDataset. In order to use a supervised CNN
on images, one needs to have a very precise dataâĂŹs architecture.
Indeed, it is mandatory to split the data into training, validation
and test sets, but one also has to arrange all the images regarding
their class. Here we used 8 different classes so in every folder (ie
training, validation and test), there have to be 8 folders, each one
containing the spectrograms of the corresponding class.

Figure 21: Illustration of dataset architecture for CNN

Moreover, the splits have to be randomly generated while the
distribution between training, validation and test should be well
balanced for each class.

A detailed code for dataset organization can be found in the CNN
notebook.

6 EXPERIMENTS AND RESULTS
6.1 Naive CNN
As said above, the first CNN we tried consisted of 2 convolutional
layers, each followed by a maxpooling layer and finally one fully
connected layer. We ran it on 300 epochs using Adam optimizer.
Our training set consisted of 5597 tracks while the validation set
contained 801. Despite the long training time it required, we delib-
erately chose a high number of epochs in order to track overfitting
if it occurs. Given the small dataset we used, it is highly likely that
overfitting will occur. After 300 epochs we obtained an accuracy
of 1 for training set while we only obtained 0.4 for validation set.
Therefore we can suspect some overfitting.

Figure 22: Plot of the loss depending on the number of epochs for
naive CNN. Training set in blue and validation set in yellow

Figure 23: Plot of the accuracy depending on the number of epochs
for naive CNN. Training set in blue and validation set in yellow

As we were expecting it appeared that our model heavily over-
fitted over the training set. The minimum loss and the highest
accuracy was reached around 27 epochs. However, even at this
moment we only obtained an accuracy of 0.46 over the validation
set, which is still below the results of our best achieving Machine
Learning models.

6.2 Batch Normalization
One of the easiest regularization techniques to avoid overfitting is
to use the Dropout method. Dropout is a technique where randomly
selected neurons are ignored during training. They are âĂĲdropped-
outâĂİ randomly. This means that their contribution to the activa-
tion of downstream neurons is temporally removed on the forward
pass and any weight updates are not applied to the neuron on the
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backward pass. Therefore, if neurons are randomly dropped out of
the network during training, that other neurons will have to step in
and handle the representation required to make predictions for the
missing neurons. This is believed to result in multiple independent
internal representations being learned by the network. The effect is
that the network becomes less sensitive to the specific weights of
neurons. This in turn results in a network that is capable of better
generalization and is less likely to overfit the training data.

Unfortunately, dropout is generally less effective at regularizing
convolutional layers. Since convolutional layers have few param-
eters, they need less regularization to begin with. Furthermore,
because of the spatial relationships encoded in feature maps, acti-
vations can become highly correlated. This renders dropout inef-
fective [7].

A workaround is Batch Normalization. For an artificial neural
network, scientists use to normalize the input layer by adjusting
and scaling the activations. For example, when we have features
from 0 to 1 and some from 1 to 1000, we should normalize them
to speed up learning. If the input layer is benefiting from it, why
not do the same thing also for the values in the hidden layers, that
are changing all the time, and get 10 times or more improvement
in the training speed.Batch normalization reduces the amount by
what the hidden unit values shift around (covariance shift) [24].

Therefore we performed a Batch normalization after each con-
volutional layer and performed only 50 epochs this time.

Figure 24: Plot of the accuracy depending on the number of epochs
for normalized CNN.

Figure 25: Plot of the accuracy depending on the number of epochs
for normalized CNN.

This time we can observe that the model may overfit but later
than the 50th epoch as the validation accuracy has an increasing

trend is still not decreasing. However, the best accuracy has been
reached at the 50th epoch with 0.43 for the validation set. It is lower
than the best result achieved with naive CNN but it is likely to be
due to the small number of epochs. With 300 epochs, the model
may overfit again but could achieve way better results. Obviously,
due to the huge training time it would require, we were not able to
try running the model on 300 epochs.

6.3 What else can be done?
In order to avoid overfitting, one can:

• Use more data
• Use data augmentation
• Use architectures that generalize well
• Add regularization

In order to obtain better result, the easiest way is to get a bigger
dataset. Unfortunately, we do not dispose of a bigger one at the
moment. Therefore, one of the solutions remains data augmentation.
However, the spectrograms we used are well standardized and
adding noise or flipping the images will certainly cause a huge
loss of information. Hence, data augmentation is not possible in
this case. Moreover, our careful split of the dataset between Train,
test and validation could not cause an unbalance resulting into
overfitting. The two last points are already met by our normalized
model.

Finally, in order to obtain better results we can also use cross vali-
dation along with parameter tuning using keras scikit wrapper. The
model has been implemented on the notebook, but unfortunately,
due to a lack of resources we were not able to run it. However, the
full code can be found in the notebook.

6.4 Why don’t CNNs on spectrograms perform
as expected?

To explain those results we first should not forget that CNN are
well suited for Image Analysis but we are not using them here for
this task. Indeed, we are using a "machine vision" technique on a
"machine hearing" problem. There are some remarkable differences
between hearing and seeing hinting that the treatment for these
two tasks should not be the same.

• Sounds are transparent: visual objects and sound events
do not accumulate in the same manner. When encountering
a pixel of a certain color in an image, it can most often be
assumed to belong to a single object. Discrete sound events
do not separate into layers on a spectrogram: Instead, they
all sum together into a distinct whole. That means that a
particular observed frequency in a spectrogram cannot be
assumed to belong to a single sound as the magnitude of
that frequency could have been produced by any number
of accumulated sounds or even by the complex interactions
between sound waves such as phase cancellation [22].

• The axes of spectrograms do not carry the samemean-
ing: A CNN trains weights on 2D filters. This relies on the
assumption that an object shown in image remains the same
even if it is moved accross space. However, for a spectrogram,
the x axis represents time while the y axis represent frequen-
cies.Therefore, moving a point in a spectrogram vertically
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Figure 26: Three examples of difficult scenarios of spectrogram
analysis. (Left): Two similar tones cause uneven phase cancellations
across frequencies. (Middle): Two simultaneous voices with similar
pitch are difficult to tell apart. (Right): Noisy and complex auditory
scenesmake it particularly difficult to distinguish sound events [22]

might affect its meaning, transforming a deep voice into
a falsetto. Therefore, the spatial invariance that 2D CNNs
provide might not perform as well for this form of data.

• The spectral properties of sounds are non-local: In im-
ages, similar neighboring pixels can often be assumed to
belong to the same visual object. But for a sound, the timbre
of a sound depends on the fundamental frequency and the
harmonics around it. That is why in a guitar for example,
there are countless different possibilities to play the same
note. The frequencies of the fundamental note followed by
its harmonics are not locally grouped but they move together
according to a common relationship. This further compli-
cates the task of finding local features in spectrograms using
2D convolutions as they are often unevenly spaced apart
even though they move according to the same factors.

Knowing these substantial differences between image and sound
treatment, we understand better why our CNNs are underperform-
ing. This opens a new study field for sound analysis through deep
learning.

7 CONCLUSION AND FUTUREWORK
Mention the highlights of the work.

Future work involves majority voting, using deep learning on
specific parts of spectrogram generated from audio. We also incor-
porate techniques like Bayesian Optimisations for Hyperparameter
optimization.
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